Improving the CNN-based seasonal prediction of summer extreme high temperature days in western North America by adding temporal varying predictors
编号:666 稿件编号:378 访问权限:仅限参会人 更新:2025-04-01 17:30:36 浏览:110次 口头报告

报告开始:2025年04月19日 17:00 (Asia/Shanghai)

报告时间:10min

所在会议:[S1-3] 专题1.3 人工智能在大气海洋中的应用 » [S1-3] 专题1.3 人工智能在大气海洋中的应用

暂无文件

摘要
The extreme high temperature in western North America (WNA) exert profound impacts on industrial and agricultural production, public health, and trigger catastrophic wildfires. Exploring the underlying mechanisms influencing extreme high temperature days over WNA (WEHDs) and improving the seasonal prediction are of great scientific and social significance. This study reveals that two independent precursor signals, persistent negative sea surface temperature (SST) anomalies in tropical eastern Pacific and the cooling tendency in subtropical Atlantic SST exhibit significant influence on WEHDs. A physical-based empirical model constructed using these two predictors exhibits robust independent prediction skills. Guided by the underlying physical mechanisms, we integrate SST tendency fields as critical input features into convolutional neural network (CNN). The physically informed CNN achieves significantly improved performance and successfully forecasts the extreme WEHD events of 2021. The results emphasize the pivotal role of physical process understanding in advancing deep learning-based climate prediction.
 
关键字
extreme high temperature days,,western North America,CNN-based seasonal prediction
报告人
谭辉
博士生 南京信息工程大学

稿件作者
谭辉 南京信息工程大学
朱志伟 南京信息工程大学
发表评论
验证码 看不清楚,更换一张
全部评论
登录 注册缴费 提交稿件 酒店预订