Nonlinear Stability of Rarefaction Wave to the One-Dimensional Quantum-Navier-Stokes equations
编号:514 稿件编号:667 访问权限:仅限参会人 更新:2025-03-31 10:18:39 浏览:89次 口头报告

报告开始:2025年04月20日 10:20 (Asia/Shanghai)

报告时间:15min

所在会议:[S3-6] 专题3.6 气候环境与数学 » [S3-6] 专题3.6 气候环境与数学

暂无文件

摘要
It is well known that the rarefaction wave is one of the basic wave patterns of the hyperbolic conservation laws.  In this talk we prove time-asymptotic stability towards the rarefaction wave to the Quantum-Navier-Stokes equations in the one-dimensional space, provided that the strength of the wave is weak and the initial perturbation is small. The proof is mainly based on \( L^2 \)-energy method and some time-decay estimates in \( L^p \)-norm for the smoothed rarefaction wave.
关键字
stability,Navier-Stokes equations
报告人
李明杰
副教授 中央民族大学

稿件作者
李明杰 中央民族大学
发表评论
验证码 看不清楚,更换一张
全部评论
登录 注册缴费 提交稿件 酒店预订